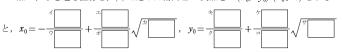
1 [2015 東京理科大]

座標平面上に 3 点 A(-1, 0), B(1, 0), C(0, 1) がある。

(1) 楕円 $E: \frac{x^2}{4} + \frac{y^2}{k^2} = 1$ (b > 0) は $2 \le A$, B を焦点としてもつとする。このとき、

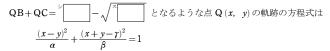
$$b = \sqrt{r}$$
 $\tau b \delta$.

(2) 2点 A, C を通る直線と、(1) で定めた楕円 E の交点を $P(x_0, y_0)$ $(x_0>0)$ とする

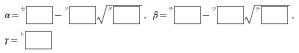


である。

(3) (2) で定めた点 P に対して、PB+PC=



である。このとき,



となる。

2 [2017 同志社大]

楕円 $x^2+2y^2=1$ を D とする。r が正の実数のとき、点 $(1-r,\ 0)$ を中心とする半径 r の 円を C とする。

- (1) $D \ge C$ が 3 つの異なる共有点をもつような γ の値の範囲を求めよ。
- (2) r が (1) で求めた範囲にあるとき、(1) の 3 つの共有点が作る三角形の面積 S(r) を求
- (3) r が (1) で求めた範囲を動くとき、(2) で求めた S(r) の最大値とそのときの r の値を求 | (2) P が E 上を動くとき、PF+QF+RF+SF の最小値を求めよ。

3 [2017 金沢大]

座標平面上の放物線 $y=x^2$ 上に点 $P(t, t^2)(t>0)$ をとる。原点 O(0, 0) を通り、直線 OP に垂直な直線を ℓ とする。また、 $0 < a \le 1$ として、点 A(0, a) をとる。

- (1) 直線 PA と ℓ は交わることを示し、その交点 $\mathbf{Q}(u, v)$ の座標を t と a を用いて表せ。
- (2) t がすべての正の実数値をとって変化するとき、(1) で求めた点 $\mathbf{Q}(u, v)$ の軌跡が $\left(-rac{1}{\sqrt{3}},\ 1
 ight)$ を通るとする。このとき,定数 a の値を求め,点 $\mathbf{Q}\left(u,\ v
 ight)$ の軌跡を求め よ。

4 [2017 旭川医科大]

O を原点とする座標平面上に長さ1の線分 AB がある。線分 AB の端点 A は x 軸上の $x \ge 0$ の部分を、端点 B は y 軸上の $y \ge 0$ の部分を動くものとする。

- (1) 線分 AB が x 軸となす角 $\angle OAB$ が θ であるとき、直線 AB を L_{θ} で表す。直線 L_{θ} 10 10 10 10 10の方程式を求めよ。ただし、 $0 \le \theta < \frac{\pi}{2}$ である。
- (2) t は $0 < t \le 1$ を満たす定数とする。直線 x = t と 直線 L_{θ} との交点を P_{θ} とする。点 P_{θ} の y 座標が最大となる θ を α とするとき, $\cos \alpha$ を t を用いて表せ。
- (3) 点 P_{α} の直交座標 (x, y) を α を用いて表せ。また $\alpha = \frac{\pi}{4}$ のとき,点 P_{α} の極座標を 求めよ。
- (4) α が $0 \le \alpha < \frac{\pi}{2}$ の範囲を動くとき,点 P_{α} の描く曲線を C とする。C 上の点 P_{α} にお ける接線が L_{lpha} であることを示し、Cの概形を図示せよ。

5 [2015 千葉大]

双曲線 $x^2-y^2=1$ …… ① の漸近線 y=x …… ② 上の点 $P_0:(a_0,\ a_0)$ (ただし $a_0>0$) を 通る双曲線 ① の接線を考え、接点を \mathbf{Q}_1 とする。 \mathbf{Q}_1 を通り漸近線 ② と垂直に交わる直 線と、漸近線②との交点を $P_1:(a_1,\ a_1)$ とする。次に P_1 を通る双曲線①の接線の接点 を \mathbf{Q}_2 、 \mathbf{Q}_2 を通り漸近線 ② と垂直に交わる直線と、漸近線 ② との交点を \mathbf{P}_2 : $(\mathbf{a}_2,\ \mathbf{a}_2)$ とする。この手続きを繰り返して同様にして点 $\mathbf{P}_n:(a_n,\ a_n),\ \mathbf{Q}_n$ を定義していく。

- (1) \mathbf{Q}_n の座標を a_n を用いて表せ。
- (2) a_n を a_0 を用いて表せ。
- (3) $\triangle P_n Q_n P_{n-1}$ の面積を求めよ。

[2015 首都大学東京]

座標平面において楕円 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ を C とする。

- C に接する傾き m の直線の方程式をすべて求めよ。
- (2) すべての辺がCに接する長方形の1辺の傾きがmであるとする。この長方形の面積 S(m) を求めよ。
- (3) m がすべての実数を動くとき、(2) で求めた S(m) の最大値を求めよ。

7 [2015 神戸大]

O を原点とする座標平面において、3つの曲線 C_1 、 C_2 、 C_3 を

$$C_1: x^2 + y^2 = 1$$
 $(x \ge 0, y \ge 0)$

$$C_2: \frac{x^2}{3} + 3y^2 = 1 \quad (x \ge 0, y \ge 0)$$

$$C_3: x^2 + y^2 = 3$$
 $(x \ge 0, y \ge 0)$

で定める。 C_1 と C_2 の交点を $\mathbf P$ とする。 $\mathbf P$ を通り x 軸に垂直な直線と C_3 との交点を $\mathbf Q$ と し、直線 OQ と C_1 の交点を R とする。直線 OP と C_3 の交点を S とし、 S を通り x 軸に 垂直な直線と C_2 との交点をTとする。

- (1) 直線 RT は C₁ に接することを示せ。
- (2) 直線 RT は C₂ に接することを示せ。
- (3) 直線 RT と C₁ と C₂ で囲まれた図形の面積を求めよ。

8 [2015 北海道大]

方程式 $\frac{x^2}{2} + y^2 = 1$ で定まる楕円 E とその焦点 F(1, 0) がある。E 上に点 P をとり,直 線 PF と E との交点のうち P と異なる点を Q とする。 F を通り直線 PF と垂直な直線と **E**との2つの交点をR,Sとする。

- (1) rを正の実数, θ を実数とする。点 $(r\cos\theta+1,\ r\sin\theta)$ が E上にあるとき, rを θ で表せ。

9 [2015 佐賀大]

点 O を原点とし、x軸、y軸、z軸を座標軸とする座標空 間において、3点A(1,0,0),B(2,0,0),C(1,0,1)が ある。 点 A を中心とする xy 平面上の半径1の円周上に点 Pをとり、図のように $\theta = \angle BAP$ とおく。ただし、

 $\frac{\pi}{2}$ < heta < $\frac{3}{2}$ π とする。また,直線 CP と yz 平面の交点を

- 点 P の座標を θ を用いて表せ。
- (2) 点 Q の座標を θ を用いて表せ。
- (3) θ の値が $\frac{\pi}{2}$ < θ < $\frac{3}{2}\pi$ の範囲で変化するとき,yz 平面における点 Q の軌跡の方程 式を求め、その概形を図示せよ。

a を正の定数とし、座標平面上の 2 点 A (2a, 0)、B (-2a, 0) を焦点とする双曲線

$$C: \frac{x^2}{a^2} - \frac{y^2}{3a^2} = 1$$

を考える。この双曲線の第 1 象限の部分を C_1 とし、動点 P(s, t) は C_1 上を動くものと する。

(1) 極限 $\lim (\sqrt{3} s - t)$ および $\lim s(\sqrt{3} s - t)$ を求めよ。

双曲線 C の 2 本の漸近線のうち、傾きが正のものを ℓ とし、線分 PB と ℓ の交点を Q と する。

- (2) 点Qのy座標をs, tで表せ。
- (3) 線分 PQ と PB の長さの比 $\frac{PQ}{PB}$ を s, t で表せ。
- (4) 極限 lim s · PQ を求めよ。

11 [2015 関西大]

n を止の整数とする。第 1 家限において、点 $\mathbf{P}(x, y)$ が曲線 $x^2 + n^2y^2 = 2$ 上を動くと
xy の最大値 a_n を n を用いて表すと, $a_n = {}^{\tau}$ である。また, xy が最大となる P
座標を (x_n, y_n) とすると, $(x_n, y_n) = \begin{pmatrix} \checkmark & & \\ & & \end{pmatrix}$ である。さらに,曲線
$x^2+n^2y^2=2$ の点 $(x_n,\ y_n)$ における接線の方程式は $y=$ し、法線の方程式は
$y={}^{t}$ である。この接線と x 軸、および y 軸で囲まれた三角形の面積 S_{n} を n を t
いて表すと, $S_n = {}^n$ である。このとき, $\lim_{n \to \infty} \left\{ \left(\sum_{k=1}^n k a_{n+k} \right) S_n \right\} = {}^{\dagger}$ である。

12 [2014 埼玉大]

実数 a, b は a>b>0 および $a^2-b^2=2ab$ を満たすとする。xy 平面上で $(a\cos\theta,\ b\sin\theta)\ (0\le\theta\le 2\pi)$ によって媒介変数表示された楕円を C とする。点 P $(b\cos t,\ a\sin t)\ \Big(0< t<\frac{\pi}{2}\Big)$ と C 上の動点 $Q(a\cos\theta,\ b\sin\theta)$ に対し, $f(\theta)=|\overrightarrow{PQ}|^2$ とおく

- (1) $f'(\theta) = 0$ であるとき、 $\sin 2\theta = \sin(\theta t)$ が成り立つことを示せ。
- (2) $f'(\theta) = 0$ となる θ を t を用いて表せ。
- (3) $f'(\theta) = 0$ となる θ がちょうど 3 つとなる t の値を求めよ。
- (4) t を (3) で求めた値とする。このとき, $f'(\theta)=0$ となる各 θ に対応する C 上の 3 点を頂点とする三角形の面積を a, b を用いて表せ。

13 [2015 宮崎大]

 $0 \leq \theta \leq \frac{\pi}{6}$ を満たす θ について、 $r(\theta) = \sqrt{2\cos 2\theta}$ とするとき、座標平面上で円 $x^2 + y^2 = \{r(\theta)\}^2$ と直線 $y = (\tan \theta)x$ は 2 つの交点をもつ。そのうち、x 座標が正である ものを P とし、P の x 座標を $f(\theta)$ 、y 座標を $g(\theta)$ とする。 θ を $0 \leq \theta \leq \frac{\pi}{6}$ の範囲で動か したときの点 P の軌跡を C とする。

- (1) $f(\theta)$, $g(\theta)$ を求めよ。
- (2) $g(\theta)$ の最大値を求めよ。
- (3) 曲線 C と x 軸,直線 $x = f\left(\frac{\pi}{6}\right)$ で囲まれた部分の面積を求めよ。

[14][2014 筑波大]

xy 平面上に楕円 $C_1: \frac{x^2}{a^2} + \frac{y^2}{9} = 1$ $(a > \sqrt{13})$ および双曲線 $C_2: \frac{x^2}{4} - \frac{y^2}{b^2} = 1$ (b > 0) があり, C_1 と C_2 は同一の焦点をもつとする。また C_1 と C_2 の交点 P $\left(2\sqrt{1 + \frac{t^2}{b^2}}, t\right)$ (t > 0) における C_1 , C_2 の接線をそれぞれ ℓ_1 , ℓ_2 とする。

- (1) $a \geq b$ の間に成り立つ関係式を求め、点 P の座標を a を用いて表せ。
- (2) ℓ_1 と ℓ_2 が直交することを示せ。
- (3) a が $a > \sqrt{13}$ を満たしながら動くときの点 P の軌跡を図示せよ。

[15] [1997 帯広畜産大]

- (1) 直交座標において、点 $A(\sqrt{3},0)$ と準線 $x=\frac{4}{\sqrt{3}}$ からの距離の比が $\sqrt{3}:2$ である 点 P(x,y) の軌跡を求めよ.
- (2) (1) における A を極、x 軸の正の部分の半直線 AX とのなす角 θ を偏角とする極座標を定める。このとき、P の軌跡を $r=f(\theta)$ の形の極方程式で求めよ。ただし、 $0 \le \theta < 2\pi, r > 0$ とする。
- (3) A を通る任意の直線と (1) で求めた曲線との交点を R, Q とする. このとき $\frac{1}{RA} + \frac{1}{QA}$ は一定であることを示せ.

16 [2011 九州大]

座標平面上の楕円 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) について、次の問いに答えよ。

- (1) x座標が小さい方の焦点 Fを極とし、Fから x軸の正の方向へ向かう半直線を始線とする極座標 (r, θ) で表された楕円の極方程式 $r=f(\theta)$ を求めよ。
- (2) 座標平面上の原点 O(0,0) と楕円上の 2 点 P_1 , P_2 について、線分 OP_1 と線分 OP_2 とが互いに直交する位置にあるとする。線分 OP_1 および OP_2 の長さをそれぞれ r_1 , r_2 とするとき, $\frac{1}{r_1^2} + \frac{1}{r_2^2}$ の値は定数となることを示せ。

17 [2009 近畿大]

座標平面において、原点 O を極、x 軸の正の部分を始線とする極座標 (r, θ) を考え、極 方程式 $r=1+\cos\theta$ $(0 \le \theta < 2\pi)$ が表す曲線を C とする。

(1) C上の点(x, y)に対して、xが最大値 $^{\tau}$ をとるのは、 $\theta = ^{\tau}$ π , $y = ^{\tau}$ のときである。y が最大値 $^{\tau}$ をとるのは $\theta = ^{\tau}$ π , $x = ^{\tau}$ のときである。第2象限において、x が最小値 * をとるのは $\theta = ^{\tau}$ のときである。

[18] [2008 山形大]

 $f(\theta)=(1+\cos\theta)(\cos\theta+\sqrt{3}\sin\theta)+4$ とおく。極方程式 $r=f(\theta)$ $(0\leq\theta\leq 2\pi)$ で表される曲線を C とする。

- (1) 原点を中心として x 軸を θ だけ回転した直線が C によって切り取られてできる線分を L とする。 L の長さ l を θ を用いて表せ。
- (2) 長さ $l(0 \le \theta \le \pi)$ の最大値と最小値を求めよ。また、そのときの θ の値を求めよ。
- |(3) Lの中点 M が描く曲線の極方程式を $r=g(\theta)$ $(0 \le \theta \le 2\pi)$ とする。 $g(\theta)$ を求めよ。
- (4) M が描く曲線の方程式を直交座標(x, y)を用いて表せ。
- (5) θ が $\frac{7}{6}\pi \le \theta \le 2\pi$ の範囲を動くとき, M が描く曲線を図示せよ。