数学Ⅲ-BASIC-第8章-積分応用-講義用問題

1 [2009 鳥取大]

曲線 $C_1: y=xe^{-x}$ と曲線 $C_2: y=2xe^{-2x}$ について、次の問いに答えよ。

- (1) 曲線 C₁ と曲線 C₂ の交点の座標を求めよ。
- (2) 曲線 C₁ と曲線 C₂ で囲まれた図形の面積を求めよ。

2 [2009 三重大]

 $f(x) = x\sin x + \cos x + 1 (0 \le x \le \pi)$ とする。

- (1) f(x) の導関数を求めよ。
- (2) f(x) の最大値、最小値を求めよ。
- (3) $0 \le x \le \pi$ の範囲で y = f(x) のグラフと x 軸、y 軸とで囲まれた部分の面積を求めま。

3 [2008 名城大]

関数 $f(x) = (2x^2 - 7x + 5)e^x$ について、次の問いに答えよ。

- (1) 関数 y=f(x) の増減を調べ、そのグラフをかけ。
- (2) $y \leq 0$ の部分で、曲線 y = f(x) と x 軸で囲まれる図形の面積を求めよ。

4 [2008 東京女子大]

座標平面上の曲線 $y=\log x$ の点 $(1,\ 0)$ における接線を ℓ とする。この曲線と直線 ℓ と直線 x=e の囲む図形の面積 S を求めよ。ただし,e は自然対数の底である。

5 [2007 兵庫医科大]

 $0 \le x \le \frac{4}{3} \pi$ の範囲で、2つの曲線 $y = \cos x$ 、 $y = \cos 2x$ によって囲まれる部分の面積を求めよ。

6 [2004 名城大]

曲線 $y=\log x$ と x 軸および 2 直線 x=a, x=a+1 (0<a<1) で囲まれる部分の面積を S(a) とするとき、次の問いに答えよ.

- (1) S(a) を a の式で表せ.
- (2) S(a) を最小にする a の値を求めよ.

7 [2001 筑波大]

曲線 $\begin{cases} x=t-\sin t \\ y=1-\cos t \end{cases}$ $(0\leq t\leq \pi)$ と x 軸および直線 $x=\pi$ とで囲まれる部分の面積 S を求めよ.

8 [2014 大阪工業大]

r を正の定数とする。2 曲線 $y=r\sin x$, $y=\cos x$ $\left(0\le x\le \frac{\pi}{2}\right)$ の共有点の x 座標を α とし、この 2 曲線と y 軸で囲まれた図形の面積を S とする。

- (1) 不定積分 $\int (\cos x r \sin x) dx$ を求めよ。
- (2) Sをαとγの式で表せ。
- (3) α を用いずに $\sin^2 \alpha$ を rの式で表せ。
- (4) (3) の結果を用いてSをrの式で表し、 $S = \frac{1}{2}$ となるようなrの値を求めよ。

9 [2015 神奈川大]

関数 $f(x) = \sqrt{x} - x$ について、次の問いに答えよ。

- (1) f(x) の導関数を求めよ。
- (2) f(x) の最大値を求めよ。
- (3) 曲線 y = f(x) と x 軸とで囲まれた図形を x 軸の周りに 1 回転してできる立体の体積を求めよ。

10 [2014 九州大]

関数 $f(x) = x - \sin x \left(0 \le x \le \frac{\pi}{2}\right)$ を考える。 曲線 y = f(x) の接線で傾きが $\frac{1}{2}$ となるものを ℓ とする。

- (1) ℓ の方程式と接点の座標 (a, b)を求めよ。
- (2) a は (1) で求めたものとする。 曲線 y=f(x), 直線 x=a, および x 軸で囲まれた領域を, x 軸の周りに 1 回転してできる回転体の体積 V を求めよ。

11 [2009 防衛大学校]

曲線 $y=\sqrt{x}$, 直線 y=x-2 および y軸とで囲まれた図形を x軸のまわりに回転してで

きる立体の体積を求めよ。

[2001 中央大]

xy 平面において,曲線 $y=\log x$ $(1 \le x \le e^2)$ と,x 軸,y 軸および直線 y=2 とで囲まれる図形 D を考える.

- (1) 図形 D を y軸の周りに回転してできる回転体の体積を求めよ.
- (2) 図形 D を x 軸の周りに回転してできる回転体の体積を求めよ.

[13][2008 広島大]

放物線 $y=x^2-1$ と直線 y=3 で囲まれる図形を考える。以下の問いに答えよ。

- この図形の面積 S を求めよ。
- (2) この図形をy軸の周りに回転させてできる回転体の体積V,を求めよ。
- (3) この図形をx軸の周りに回転させてできる回転体の体積 V_x を求めよ。

[14][2007 京都大]

 $y=xe^{1-x}$ と y=x のグラフで囲まれた部分を x 軸の周りに回転してできる立体の体積を求めよ。

15 [2003 大阪工業大]

曲線 C が媒介変数 t を用いて

 $x = \cos t$, $y = 2\sin^3 t$

と表されているとき,次の問いに答えよ.ただし, $0 \le t \le \frac{\pi}{2}$ とする.

- (1) $\frac{dy}{dx}$ を t を用いて表せ.
- (2) 曲線 C, x 軸および y 軸で囲まれる図形の面積を求めよ.
- (3) (2) で考えた図形を y軸の周りに 1 回転して得られる回転体の体積を求めよ.

16 [2010 中央大]

空の容器に毎秒 $a\pi$ の割合で水を入れ始めた (a は正の定数)。この容器にたまる水の面は常に円をなしている。容器の底からの高さが h のとき水面の面積を S(h) とおく。このとき以下の問いに答えよ。ただし、容器は十分大きく水はあふれないものとする。

- (1) 水面の高さhがHに達したときにたまっている水の量V(H)を,HとS(h)を用いて表せ。
- (2) 水を入れ始めてから t 秒後の水面の高さを H(t) としたとき, H'(t) は常に水面の面積 S(H(t)) に反比例すること, すなわち $H'(t)\cdot S(H(t))=k$ (k は定数) となることを示し,k の値を求めよ。

高さ h での水面の半径を r(h) とおく。以下では $r(h) = \frac{\log(h+1)}{\sqrt{h+1}}$ であるとする。

- (3) (1)で定めた V(H) を H を用いて表せ。
- (4) (2) で定めた H(t) を a と t を用いて表せ。

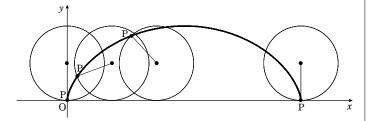
[17][2004 摂南大]

数直線上を動く点 ${\bf P}$ の座標 x が時刻 t の関数として $x=12t-3t^2$ と表されるとき,点 ${\bf P}$
の時刻 $t=1$ のときの速度は $^ extstyle ex$
は時刻 $t=$ のときに座標が $x=$ である点において運動の向きを変えるの
で、時刻 $t=0$ から $t=5$ までの間に動いた道のりは * である.

[18][2006 芝浦工業大]

図のように、x軸の上に原点 O で接するように半径 1 の円板を置く。この円板を,周囲が滑らないようにして、x軸の正の方向に一定の速さで転がす。初めに原点 O と接していた点を P とする。

- (1) 円板を時刻 t=0 で転がし始め、 $t=2\pi$ でちょうど 1 回転させたとする。時刻 t における点 P の座標は $(x(t), y(t))=(t-\sin t, 1-\cos t)$ で表される。点 P の動く速さ v(t) を t を用いて表せ。
- (2) 点 ${\bf P}$ の動いた距離は、速さ v(t) の時間 t に関する積分で表されることが知られている。円板がちょうど 1 回転する間に点 ${\bf P}$ が動いた距離を求めよ。
- (3) 円板がちょうど 1 回転する間に点 ${\bf P}$ が描いた曲線と ${\bf x}$ 軸で囲まれた部分の面積 ${\bf S}$ を求めよ。



19 [2001 長崎大]

曲線 $y=\frac{1}{x+1}$ とx 軸および 2 直線 x=k, x=2k (ただし, k>0) で囲まれた図形を x 軸の周りに 1 回転して得られる立体の体積を V(k) とする.

- (1) V(k) を求めよ.
- (2) V(k) の最大値とそのときの k の値を求めよ.

20 [2001 津田塾大]

- (1) $y=e^x$ のグラフ上の点 (a, e^a) (ただし、 $0\leq a\leq 1$) における接線をl とする. x 軸と 3 直線 l, x=0, x=1 とで囲まれた図形を, x 軸の周りに回転させてできる回転体の体積 V(a) を求めよ.
- (2) $0 \le a \le 1$ において、V(a) を最大にする a の値,最小にする a の値をそれぞれ求め よ.ただし,e = 2.72 としてよい.